

The reaction products were a 1-benzyl-3-(4-ethoxyphenyl)-6,7-dimethoxy-2-benzopyrylium salt (III), which was isolated in quantitative yield, and 4,4'-diflav-2-enyl (VI), which was isolated in 70% yield. The physical and spectral characteristics of salt III are identical to those of a sample obtained by the method in [1], and those of VI are identical to those described in [2].

The formation of salt III evidently proceeds through intermediate cation radical II, which captures a hydrogen atom from the chloroform used as the solvent.

4,4'-(1,2-Ethanediylidene)bis(4H-7-methoxyflavene) undergoes a similar reaction [3].

LITERATURE CITED

1. G. N. Dorofeenko and E. V. Kuznetsov, Khim. Geterotsikl. Soedin., No. 2, 207 (1970).
2. G. A. Reynolds, J. A. Van Allan, and T. H. Regan, J. Org. Chem., 32, 3772 (1967).
3. J. A. Van Allan and G. A. Reynolds, Tetrahedron Lett., 25, 2047 (1969).

MOLECULAR STRUCTURE OF 3-AMINO-1,2,4-TRIAZOLE

V. V. Makarskii, G. L. Starova,
O. V. Frank-Kamenetskaya, V. A. Lopyrev,
and M. G. Voronkov

UDC 547.792 : 548

3-Amino-1,2,4-triazole (also known under its technical names amizol, amitrole, etc.) can exist in several tautomeric forms, of which the most probable structures, according to the results of quantum-chemical calculations [1], are 3-amino-1H-1,2,4-triazole (I) and 3-amino-2H-1,2,4-triazole (II). We made an x-ray diffraction study of single crystals of this compound (with a $P2_1$ diffractometer, 387 nonzero independent reflections, and Mo emission) and established the lattice parameters $a = 9.29(1)$, $b = 10.64(3)$, $c = 3.73(2)$ Å, $\beta = 94.96(8)^\circ$, and $z = 4$ and space group $P2_1/n$. A model of the structure was obtained by means of a complex of programs of Multan direct methods, and the result was refined up to an R factor of 0.057. Peaks above $0.24e\text{ \AA}^{-3}$ were not observed on maps of the last differential Fourier synthesis. The ring configuration found (Fig. 1) is in agreement with the data for unsubstituted 1,2,4-triazole [2].

Since the hydrogen atom is localized on the nitrogen atom adjacent to the amino group, the molecule has the 3-amino-2H-1,2,4-triazole structure (II).

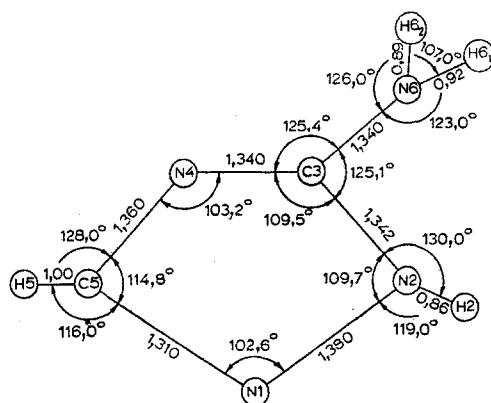


Fig. 1. Configuration of the triazole ring.

All-Union Scientific Production Union, Bumpprom. A. A. Zhdanov Leningrad State University, Leningrad 199004. Irkutsk Institute of Organic Chemistry, Siberian Branch of the Academy of Sciences of the USSR, Irkutsk 664033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1138-1139, August, 1977. Original article submitted February 28, 1977.

LITERATURE CITED

1. V. V. Makarskii, V. A. Zubkov, V. A. Lopyrev, and M. G. Voronkov, Khim. Geterotsikl. Soedin., No. 4, 540 (1977).
2. P. Goldstein, J. Ladel, and G. Abowitz, *Acta Cryst.*, B, 25, No. 1, 135 (1969).